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ABSTRACT
We study a system that experiences damaging external shocks at stochastic intervals,
continuous degradation, and self-healing. The motivation for such a system comes
from real-life applications based on micro-electro-mechanical systems (MEMS). The
system fails if the cumulative damage exceeds a time-dependent threshold. We de-
velop a preventive maintenance policy to replace the system such that its lifetime
is prudently utilized. Further, three variations on the healing pattern have been
considered: (i) shocks heal for a fixed duration τ ; (ii) a fixed proportion of shocks
are non-healable (that is, τ = 0); (iii) there are two types of shocks — self healable
shocks heal for a finite duration, and nonhealable shocks inflict a random system
degradation. We implement a proposed preventive maintenance policy and compare
the optimal replacement times in these new cases to that of the original case where
all shocks heal indefinitely and thereby enable the system manager to take necessary
decisions in generalized system set-ups.
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1. Introduction

Industrial systems are often challenged by external impetus that affect their normal
functioning. An impetus that inflicts a damaging effect is called a “shock”. In the last
few years, there have been extensive studies on different types of external shocks and
their effects on a system. On the other hand, when an impetus produces a positive
effect on the system by improving its current state, it is called a “healing effect”.
When the system heals by default, without requiring intervention, it is called “self-
healing”. Such natural and continuous self-healing is commonplace in many industrial,
ecological, and biological systems and may continue either indefinitely or for a specific
duration.
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Self-healing exists in software debugging systems, where bugs, malware invasion,
license expiration, etc. are considered shocks, while automatic system cleansing is
considered self-healing. Other industries such as polymer industries, and micro-electro-
mechanical systems (MEMS) also observe self-healing phenomena. More details on
MEMS are discussed in Subsection 2.1. Industries spend millions of dollars to monitor
and maintain systems to prevent them from failing, especially when such a failure
is catastrophic. These maintenance policies seek optimal rules to replace the system
before risking its failure.

In recent decades, many shock models with healing effects have been studied that
also permit sporadic shocks of variable magnitudes and continuous internal degra-
dation. For example, in Shen et al. (2018) [13] shocks arrive according to a Poisson
process with changing intensities. Depending on the degree of accumulated damage,
the system performance can be divided into several states. In some states, self-healing
reduces accumulated damage; however, self-healing can stop when the system reaches
a specific state. There may be an internal degradation process also. For instance, in
some systems or components like MEMS and servo motors as described in Wang et al.
(2020) [26], natural degradation affects the consequences caused by shocks and vice
versa. That paper allows a natural degradation state (NDS) function to classify shocks
into safety, damage, and fatal zones according to their thresholds and derives a closed-
form reliability function and failure time distribution function. Dong et al. (2020) [9]
introduced a “damage recovery factor” to quantify self-healing and its effect on the
reliability function and the mean failure time. They allow random shocks to accelerate
the internal degradation rate, and discuss a preventive replacement policy. Similarly,
Kong et al. (2020) [17] formulated a reliability model in multiple competing failure
processes by considering the magnitudes of the shock and their duration simultane-
ously to study their impacts on the degradation processes, describing both recovery
level and recovery time. Ranjkesh et al. (2019)[22], evaluate system reliability using
dependencies between inter-arrival times having phase-type distributions and shock
magnitudes. Kang et al. (2022) [15] provides a method for analyzing the reliability of
systems that have self-healing mechanisms and are subject to cumulative shocks of two
types — fixed-interval shocks and random shocks —following a certain inter-arrival
time distribution, and show that self-healing mechanisms can significantly improve
system reliability under both types of shocks. Hashemi et al. (2022) [14] investigates
maintenance strategies for repairable systems experiencing two distinct types of failure:
internal aging-related failures and fatal external shocks following a nonhomogeneous
Poisson process.

Systems exposed to shocks may also undergo degradation, which has been studied
extensively in the literature. For example, Dong et al. (2023) [10] provides a model for
designing proactive replacement strategies for degraded systems subject to two types of
external shocks: Proactive strategies involving replacing components before failure and
reactive strategies involving waiting until a failure. Proactive strategies are generally
more cost-effective than reactive strategies, especially in systems subject to external
shocks. Cha and Finkelstein (2019) [1] study the operation of systems in a dynamic
environment where the system hazard is represented as an additive hazard rate model,
where shocks arrive according to homogeneous or nonhomogeneous Poisson Process.
Ye et al. (2023) [27] presents a generalized dynamic stress-strength interference model
for a self-healing protective structure that is subject to dynamic loads. The model is
developed based on the δ-failure criterion and takes into account the uncertainties in
the stress and strength parameters and it is shown to accurately predict the failure
probability of the self-healing protective structure under dynamic loading conditions.
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Chang et al. (2021)[2] perform a reliability analysis method for systems that are subject
to degradation over time by taking into account the change in the degradation rate
and hard failure threshold as the system degrades. Moreover, Dong et al. (2021) [8]
also discuss internal degradation.

In the literature, various kinds of policies are implemented to maintain the system.
A survey of various maintenance policies for industrial systems is provided in Wang
(2002) [25], including a broad spectrum of replacement policies such as age-dependent,
periodic, failure limit, and sequential preventive maintenance policies. These policies
essentially use one of the following optimization criteria: maximize availability, mini-
mize expected cost per unit time, minimize downtime, and minimize limiting failure
rate. They also consider various repair policies such as perfect or imperfect repair, and
various monitoring strategies such as at discrete time points or continuously. We will
proceed to seek an optimal maintenance policy that minimizes the average cost per
unit of time. Preventive maintenance (PM) and corrective maintenance (CM) are the
two classical types of maintenance policies undertaken to maximize profit or minimize
loss due to failure. In Chien et al. (2012) [7], each period of operation inflicts a random
amount of damage to the system and those damages accumulate to trigger a PM or
a CM action. The long-run expected cost rate is minimized to determine the optimal
policy. Qiu et al. (2020) [21] develop a novel reliability model characterizing the self-
healing effect on system reliability. They carry out an imperfect repair following each
minor failure and replace the system based on its lifetime and the number of minor
failures. The optimal replacement time is determined using a stochastic dynamic pro-
gramming formulation that minimizes the expected total cost of system failure and
imperfect repairs. In Dong et al. (2021) [8], external shocks and their damaging ef-
fects are considered for multi-component systems which are subjected to dependent
and competing failure processes. Generalized shock models are presented under sev-
eral shock categories. A block replacement policy is introduced and the Nelder–Mead
downhill simplex method is employed to determine the optimal replacement inter-
val based on the derived system reliability. Zhang and Yang (2020a) [28] introduce
a state-based postponement maintenance policy for asset management, considering
uncertain environmental stresses and defect signals which address the challenges of
optimizing the remaining useful lifetime by characterizing environmental damage and
health state variations. It offers two levels of postponed maintenance windows based
on inspection consequences. In another work, Zhang and Yang (2020b) [29], authors
developed a state-based maintenance policy with multifunctional maintenance win-
dows, considering the impact of environmental disturbance on health variation and
defect propagation. Here, three types of maintenance windows are scheduled, allowing
flexible allocation of inspection and spare part resources.

Stage-based stochastic models have also been considered in the literature for study-
ing the reliability of a system. For example, Finkelstein and Gertsbakh (2016) [12]
consider two preventive maintenance strategies: one based on the system entering in-
termediate states between the initial UP state and the final absorbing DOWN state,
and the other based on the occurrence of a certain number of shocks. Further, Finkel-
stein, Maxim, and Eryilmaz (2021) [11] establish conditions for the existence of a
unique and finite preventive maintenance time based on the dynamic reliability char-
acteristics of the system. Applications of systems exposed to external shocks, internal
degradation, and experiencing self-healing can be found in MEMS (See Dong et al.
(2020) [9] and Dong et al. (2021) [8]) and power transmission systems (see Kong et al.
(2020) [17]).

The current research builds upon Chatterjee and Sarkar (2022) [5] and Chatterjee
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and Sarkar (2021) [4], where the system was exposed to randomly arriving external
shocks of the same magnitude. Here, unlike the above papers, we let external shocks
inflict damages of varying magnitudes. We also permit the system to start to heal
instantaneously and continue to heal at a fixed rate while also continuously degrading
due to aging. Under this more general model of variable damage, our objective is to
determine an optimal replacement time that minimizes the cost per unit time. The
current work extends the above literature by not only considering either healing or
degradation but both at the same time while employing condition-based replacement
policies. We also do not restrict ourselves to any well-known arrival process for the var-
ious kinds of shocks but instead, allow ourselves to consider any arbitrary distribution
of inter-arrival times of those shocks. By building probabilistic models, we simulate
various situations that are inspired by real-life systems such as the MEMS to guide
system managers in their decision-making by weighing the risk of failure during the
lifetime of the system.

The remainder of the paper is organized in the following way. Section 2 describes the
evolution of the system as a continuous-time stochastic process that renews itself after a
preventive or corrective replacement and presents a practical industrial example where
such a model may be useful. Subsection 2.2 explains the method of computing the
expected cost per unit of time. Subsection 2.3 reports the optimal replacement times
obtained in simulation studies. Furthermore, once we have established the optimal
replacement policy, we also consider different variations of our assumed system in
Section 3: First, the damaging shocks can heal only for a finite duration τ (Subsection
3.1); second, a fixed proportion of shocks are non-healable (that is, τ = 0 for these
shocks) (Subsection 3.2); and third, there are two different types of shocks—healable
for a finite duration τ and non-healable (Subsection 3.3). Details of the simulation
studies for the three subcases are mentioned in Section 3. Section 4 summarizes our
research findings.

2. Stochastic Evolution of Systems

The system described in this research is either a single- or a multi-unit system. Exter-
nal shocks arrive with random inter-arrival times inflicting damages of random mag-
nitudes. Immediately after a shock arrives, the system begins to heal, which reduces
the accumulated damage. We assume that exponential healing occurs continuously
according to an exponential function and at a constant rate; therefore, cumulative
damage decreases exponentially. The system fails when cumulative damage crosses a
certain threshold, which decreases over time as a result of aging.

The set-up and assumptions:

(A1) Let X1, X2, . . . , Xn denote the inter-arrival times of shocks which are indepen-
dently and identically distributed (IID) with arbitrary CDF F .

(A2) Let Y1, Y2, . . . , Yn denote the corresponding magnitudes of damage caused by the
external shocks, which are IID with arbitrary CDF G.

(A3) Damages from the shocks accumulate over time.
(A4) The system self-heals from the damages at a constant rate. Hence, at any given

time, either a shock arrives, causing the cumulative damage to shoot up, or
the system continuously heals from the effects of all previous shocks, causing
the cumulative damage to decrease continuously. Instantaneous start of healing
effect has been previously studied in the literature. In Liu et al. (2017) [18], heal-
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ing started immediately and decreased linearly. Also assuming an instantaneous
start of healing, Liu et al. (2018) [19] extended the healing functions to include
exponential healing for an indefinite duration, exponential healing for a limited
duration, and a harmonic healing function.

(A5) The system fails when the accumulated damage exceeds a certain boundary
threshold, which decreases over time at a faster rate as the system ages, making
it more vulnerable to failure. The justification behind such an assumption is that
an aging system cannot tolerate as much damage as a younger system can. While
many papers in the literature assume a constant threshold, some recent papers
such as Liu et al. (2018)[19] and Hao and Yang (2018) [13], consider variable
thresholds based on the system condition at a given time. Because the damage
tolerance capacity of the system decreases over time, we assume the tolerance
threshold is a non-increasing function. Here, for illustration, we assume that the
boundary is a quadratically decreasing function. We choose this function only for
illustration purposes. The user may consider any other non-increasing function.
Thus, the system fails in one of two ways:

(i) a new shock arrives so that the cumulative damage exceeds the boundary;
(ii) the accumulated damage, though decreasing, crosses the boundary while

the system is healing because aging causes the boundary to come down
faster.
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Figure 1. Depicting cumulative damage (black and red curves) as shocks arrive randomly. The blue curve rep-

resents the quadratically decreasing boundary threshold; dotted vertical segments denote the random amount

of damage inflicted by each shock, and the continuous curves represent the exponential decay of cumulative
damage due to constant healing. When the cumulative damage exceeds the boundary threshold, the system
fails.

Figure 1, which depicts the accumulated damage as a function of time, illustrates
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these two types of failure using two sample paths. The black sample path crosses the
boundary threshold when a shock of sufficient magnitude arrives. The red sample path
exceeds the boundary while the system is healing, but the boundary is reducing faster.

2.1. A motivating example

The model discussed in this paper is a probabilistic approach to studying system
reliability. Even though systems in real life may not exactly abide by the assumptions
cited in this paper, inspired by some recent papers, we mention potential applications
of such a system. Our motivation comes from the micro-electro-mechanical systems
(MEMS) studied in Miller et al. (1997)[20], Tanner and Dugger (2003) [24], Kim et al.
(2007) [16], Liu et al. (2017) [18], Che et al. (2019) [6], for example.

MEMS utilize miniature devices that integrate mechanical and electrical compo-
nents. MEMS are composed of mechanical microstructures, microsensors, microactua-
tors, and microelectronics, all combined into a single silicone chip. Microsensors detect
modifications in the system surroundings by measuring mechanical, thermal, magnetic,
chemical, or electromagnetic variables. The integrated circuits are engineered to as-
similate such information and respond appropriately by using the electrical and/or
mechanical properties of silicone. The application of MEMS technology is widespread:
It is used in inkjet printers, projection displays, data storage systems, optical and wire-
less telecommunications, smartphones, smartwatches, safety equipment such as airbag
systems, etc. In biomedical fields, MEMS are widely used in ICU equipment, kidney
dialysis units, scanning probe microscopes, DNA and RNA sequencers, etc. For such
systems, maintenance personnel with proper domain knowledge will find the stochastic
model and the computational techniques proposed in the upcoming sections useful for
decision-making.

MEMS are susceptible to a wide range of random shocks that cause damage: me-
chanical shocks such as static friction, fracture, creep, and degradation of dielectrics;
environmental shocks such as fluctuations in humidity; electrical shocks such as sudden
voltage drops, etc. Sensors and testers can identify the arrival of shocks that affect the
silicone layer of the chip. As soon as the system experiences a shock, lubricant films
on the silicone surface initiate self-healing instantaneously and at a constant rate; see
Kim et al. (2007) [16].

Suppose that from prior failure data, we have information on the initial threshold.
Thereafter, as time progresses, chemical (corrosion, chemical reaction, etc.), mechan-
ical (pressure, friction, etc.), and physical (wear debris on rubbing surfaces) changes
reduce the fault tolerance threshold, captured by equation (2), for example.

Thus, MEMS are real-life examples of systems subject to shocks, degradation, and
self-healing. The main contribution of this paper is to empower system managers to
decide when to replace a system experiencing sporadic shocks arriving according to
an arbitrary distribution, healing according to various patterns, and degrading due to
aging.

2.2. Methodology

Let us explain how to calculate the cumulative damage to the system at any given
time: Let Sj =

∑j
i=1Xi be the arrival time of the j-th shock. The damage amount

of the first shock is D1 = Y1. This shock starts to heal instantaneously and continues
to heal until the next shock arrives. Therefore, at time t (> S1), the accumulated
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damage is D1e
−κ(t−S1). As soon as the next shock arrives at time t = S2 inflicting

additional damage Y2, the cumulative damage amount becomes D2 = Y2 +D1e
−κX2 .

For time t (> S2) the accumulated shock is D2e
−κ(t−S2), and so on. Let N(t) denote

the number of shocks that have arrived by time t (observed at increments of ∆). Then
the cumulative damage D, at time t is computed as

D(t) =

N(t)∑
i=1

Yie
−κ(t−Si) (1)

where Yi is the damage inflicted by the i-th shock, and κ is the fixed healing rate.
For monitoring purposes, the system is observed at regular epochs at increments of

∆ over a window of time [0, T ]. Borrowing the discretization approach in Chatterjee
and Sarkar (2020) [3], we choose ∆ sufficiently small so that for all practical purposes
we observe the system almost continuously.

We consider a non-increasing boundary threshold B(t). For illustration, we choose
the following quadratically decreasing function

B(t) = a+ bt− ct2 (2)

where a, c ∈ R+ and b ∈ R. Note that, the above choice of the boundary threshold is
illustrative only, one can consider any other non-increasing function of time. At each
observation epoch, we measure the difference between the cumulative damage. For
k = 1, 2, . . . , if the cumulative damage D(t) does not cross the threshold B(t) at the
(k − 1)-st observation epoch, but is found to have crossed it at the k-th inspection
epoch, then the system has failed in between these two epochs, and we replace it at
time T = k∆.

However, replacement upon failure is not desirable due to the high cost of replacing
a failed system and the loss of revenue until a new system is installed. This has
been explained in more detail in Figure 2. Therefore, we must determine a preventive
maintenance policy in which we replace the system before failure; however, we must not
replace the system too early and forfeit its remaining lifetime. Therefore, we propose
the following maintenance policy: Whenever the cumulative damageD(t) enters within
d units of the threshold B(t), where d > 0 is yet to be determined, an alarm is activated
and we replace the system after an additional time t∗ which depends on the tolerable
risk probability (say, between 10% and 20%) that the system might fail before that
epoch. Thus, the choice parameter d is related to the additional duration t∗ after the
alarm sets off when we replace the unfailed system. For any choice of d ∈ [D1, D2],
at increments of 0.1, we apply Algorithm 1 to compute lifetime, replacement time,
residual lifetime, and the number of shocks.

Algorithm 1

(S1) Generate n shocks with inter-arrival time X1, X2, . . . , Xn IID with CDF F and
magnitudes. Y1, Y2, . . . , Yn IID with CDF G, where n is sufficiently large; say,
n ≈ 2 T /E[X].

(S2) Calculate cumulative damage D(t) at each epoch t = j∆ (for j = 1, 2, · · · ) using
equation (1). Suppose that T = k∆ is the first time D(t) exceeds the boundary.
Then we must replace the system at epoch T , called failure time.

(S3) We record the number N of shocks that the system endures until failure.
(S4) Let T ′ = l∆, for some l < k, be the first time that cumulative damage D(t) is

within d units of the boundary. Had we replaced the system at T ′, the lifetime
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Figure 2. Reliability functions plotted against time for the displayed situations when X ∼ Weibull(2,2/π),
Y ∼ Weibull(2,1/2), B(t) = 500− t2/50 and κ = 0.02.

of the system lost due to premature replacement would have been T − T ′, and
would be called residual lifetime. We call T ′ the premature replacement time.

(S5) Repeat steps (S1) to (S4) 104 times. For each repetition, obtain T , T ′, N , and
compute r = T − T ′.

Note that our objective is to utilize the system to its fullest. Therefore, we should
not replace the system too soon. How long could we allow the system to function before
replacing it so that the chance of a system failure within this additional duration would
be 10%, 15%, or 20% (equivalently, survival probabilities would be 90%, 85% or 80%),
respectively? Note that we are only allowing up to a 20% risk of failure — the reason
behind that will be presented later. Let us denote these survival percentiles after the
alarm sets off by t∗.90(d), t

∗
.85(d), and t∗.80(d), respectively (collectively denoted by t∗γ(d)

for γ = 0.90, 0.85, 0.80). We compute these survival percentiles using the 1000 values
of the residual lifetime r = T − T ′. This we do for every choice of d ∈ [D1, D2], at
increments of 0.1. Our main objective is to find an optimal d such that the expected
cost per unit of time is minimized when we are willing to risk a small (10%, 15% or
20%) chance of system failure within the next t∗γ(d) units of time after the alarm sets
off.

To compute the expected cost per unit time, let c0 be the initial cost of installing
the system, cI be the per unit time cost of inspection and maintenance (although the
inspection cost is incurred at increments of ∆, we redistribute the cost over the entire
interval), cop be the per unit time cost of operating the system, crev be the per unit
time revenue earned by the system while operating (it is a negative cost), and cf be
the additional cost of failure replacement. Here, we do not incur any cost to repair.
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We install a brand new unit and remove a failed/significantly damaged system and
replace it with another new system. We only observe the system and do not intervene
unless a system fails or is significantly damaged; hence, no repair is made. We define
as cycle time the duration from the time a system is installed for operation until it
is replaced at epoch min{T, T ′ + t∗γ(d)}. Then, the expected cost (EC) within a cycle
time is:

EC[t∗γ(d)] = c0 + (cI + cop − crev)× E[min{T, T ′ + t∗γ(d)}] + cfIF (3)

where IF = 1 if the system experiences failure and IF = 0 if the system is replaced
before failure. We wish to minimize EC[t∗γ(d)]/E[min{T, T ′ + t∗γ(d)}] to get expected
cost per unit time (ECPUT) with respect to d.

2.3. Simulations

To demonstrate our proposed policy for finding the optimal d and associated ex-
pected t∗γ(d), we choose T = 100,∆ = 0.05, κ = 0.01 or 0.02, E(X) = 1 and
E(Y ) = 10, respectively. We take n = 200 so that in every iteration, the cumu-
lative damage (almost) surely crosses the boundary (2) with a = 500, b = 0 and
c = 0, 1/60, 1/50, 1/40, 1/30. We calculate the cumulative damage at time t using
equation (1). We make 1000 such iterations to obtain our results. Let the various
costs be c0 = 5000, cI = 50, cop = 100, crev = 200, cf = 1000. We search for optimal
d ∈ [D1 = 8, D2 = 16].

In Figure 2, we present the reliability diagram for various cases of replacing the
system. When the system is removed after a failure, we call it a 100% failure risk
(FR) situation. If the system is replaced as soon as the cumulative damage reaches
within d units of the boundary for the first time but has not failed, we call it a 0%
risk situation. When cumulative damage reaches within d units of the boundary and
we allow the system to function for an additional t∗γ time, where (γ = 0.90, 0.85, 0.80),
we call them 10%, 15% and 20% risk situations, respectively. After calculating the
ECPUT for these situations, we plot the reliability functions for each of them. We
see that the utilization time of the system is the highest if we replace it at failure,
but it has a high cost. On the other hand, the reliability is the lowest for the 0% risk
situation; but the cost incurred is much lower. We see that t∗γ for γ = 0.80 is almost
half of the mean residual lifetime. When we are willing to take a 20% risk of failure,
the ECPUT is the smallest. However, it is only 1.1% lower than the corresponding
ECPUT at 10% risk. Therefore, increasing the risk further is not worthwhile. A low-
risk situation (10% or 15%) is a good trade-off between reliability and cost. Thus,
reliability should not be the sole criterion for deciding when to replace the system; we
must also minimize the cost. Due to similar results throughout, we base our analysis
on minimizing the cost per unit of time in the following sections.

For inter-arrival time between shocks, we choose X ∼ Weibull (shape = 2, scale =
2/

√
π) so that E(X) = 1. For magnitude of shocks, we choose Y ∼ Weibull (shape =

10, scale = 50/Γ(1/5)) so that E(Y ) = 10. For each choice of d ∈ [8, 16] at increments
0.1, values of t∗γ are obtained for γ = 0.90, 0.85, 0.80. In Figure 3, as an illustration, we
display the survival plot for a particular choice d = 12 showing that t∗.90 = 0.50, t∗.85 =
0.70, t∗.80 = 0.94.

Next, using equation (3), the expected cost per unit time is calculated for every
choice of d and the associated t∗γ , for γ = 0.90, 0.85, 0.80. Figure 4 demonstrates that
the larger the d (that is, the farther the accumulated damage from the boundary), the
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Figure 3. When B(t) = 500 − t2/50, κ = 0.02 and d = 12, for γ = 0.80, 0.85 and 0.90, the additional time

t∗γ that the system should be allowed to operate after the alarm sets off are 0.94, 0.70 and 0.50 units of time
respectively.

larger the t∗γ , for each γ. Figure 5 shows the expected cost per unit of time as a function

of d when X ∼ Weibull (shape = 2, scale = 2/
√
π), Y ∼ Weibull (shape = 2, scale

=1/2) and B(t) = 500−t2/50. If ECPUT has multiple minima, we choose the smallest
one, since we wish to utilize the system as much as possible without compromising the
cost per unit time.

Table 1 displays the simulation results showing the optimal d for different choices
of κ and boundary thresholds with different quadratic coefficients, but keeping the
inter-arrival distribution Weibull and the magnitude of shocks Weibull.

Here are some lessons learned from Table 1:

(1) If the healing rate κ increases, the system heals faster so that it takes longer
for the accumulated damage to come within d units of the boundary, thereby
increasing the replacement time. By the same logic, a higher κ also causes the
optimal d to be smaller.

(2) Also, for a fixed κ and for a particular choice of boundary threshold, if survival
probabilities are chosen to be smaller, then t∗ increases or at least remains the
same (because, by definition, t∗80 ≥ t∗85 ≥ t∗90), and the optimal d also increases,
because of monotonic relation with t∗ exhibited in Figure 4. Conversely, if we
demand a higher survival rate, then the optimal d decreases.

(3) As the boundary threshold decreases at a faster rate, the optimal d becomes
larger and the corresponding t∗ is smaller for each of the 90%, 85%, and 80%
survival rates. This is because when the boundary decreases faster, we should
let the alarm go off earlier to avoid potential failure.
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Figure 4. The percentiles t∗80 ≥ t∗85 ≥ t∗90 are increasing functions of d.

For boundary B(t) = 500 − t2/50, healing rate κ = 0.02, and Y following Weibull
distribution, Table 2 shows the optimal d and the associated t∗γ for various distributions
of inter-arrival time of shocks.

When X has Weibull or gamma distribution, the additional time t∗(γ) after the
alarm sets off, is comparable, and the optimal d is robust around 10. However, when
X is inverse-Gaussian, the t∗γ values are much lower, because inverse-Gaussian dis-
tribution has a heavier right tail than Weibull and gamma. Likewise, because the
exponential distribution has an even thicker right tail, the corresponding t∗γ ’s are even
smaller. Among all inter-arrival time distributions considered here, exponential is the
most heavy-tailed; hence its survival function is the highest, and the optimal d is the
largest. In the next section, we discuss some variations in the healing pattern.

3. Variations in the healing effect and the shock types

In this section, we discuss some variations on the stochastic modeling of the system
evolution described in Section 2.

3.1. Case 1: Healing stops after a finite duration

Unlike in the previous section where healing continues indefinitely so that the damage
eventually heals 100%, in this subsection, healing continues only up to a finite duration
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Figure 5. The expected cost per unit time is minimized at d = 9.4 for γ = 0.80, at d = 10.1 for γ = 0.85,
and at d = 10.0 for γ = 0.90. If there are multiple minima, choose the smallest one.

τ , and thereafter stops, so that only a certain percentage of the inflicted damage heals.
Conversely, if we specify what proportion of the inflicted damage will heal, we can find
the corresponding τ . Thus, the shocks are not totally healable, and residual damage
is left behind. Figure 6 illustrates the accumulated damage until system failure.

For illustration, we make the following choices: For exponential healing with rate
κ = 0.01, we choose τ = 50 to attain a 40% healing of the inflicted damage and τ = 25
for a 22% healing. When the healing rate increases to κ = 0.02, a choice of τ = 25
attains a 40% healing, and τ = 50 attains a 64% healing. Using the notation A∧B to
denote the minimum of A and B, the cumulative damage D(t) at time t is calculated
as

D(t) =

N(t)∑
i=1

Yie
−κ[(t−Si)∧τ ] (4)

We see that the equation (4) matches equation (1) when we let τ = ∞. As in the
previous section, we calculate the lifetimes, replacement times, and associated t∗γ ’ s

for survival probabilities γ = 0.90, 0.85, 0.80 after 104 repetitions of the stochastic
process. We implement the same preventive maintenance policy as in Subsection 2.3
to document in Table 3 and Table 4 the optimal d and the associated t∗γ under the
modified healing rule for τ = 50 and 25 respectively.
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Table 1. For X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), and for various choices of κ and B(t), the optimal d

and [the associated t∗γ ] are displayed for γ = 0.80, 0.85, 0.90.

B(t) = 500
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 9.1 [0.625] 9.1 [0.803] 9.6 [0.963]
0.02 8.2 [1.105] 8.2 [1.137] 8.8 [1.423]

B(t) = 500− t2/60
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 9.6 [0.448] 9.6 [0.583] 9.6 [0.709]
0.02 8.6 [0.610] 8.6 [0.782] 8.7 [0.953]

B(t) = 500− t2/50
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 10.3 [0.456] 10.4 [0.575] 10.4 [0.679]
0.02 9.4 [0.601] 10.1 [0.774] 10.0 [0.934]

B(t) = 500− t2/40
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 10.6 [0.401] 10.6 [0.534] 10.6 [0.638]
0.02 9.5 [0.530] 10.2 [0.698] 10.2 [0.843]

B(t) = 500− t2/30
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 10.8 [0.376] 10.8 [0.495] 10.8 [0.606]
0.02 9.7 [0.526] 10.7 [0.681] 10.7 [0.813]

Note that the overall optimal replacement time t∗γ when τ is a finite number is
lower than that in Subsection 2.3 where τ = ∞. This is anticipated because when
the shocks do not heal indefinitely, their residual damages bring the collective damage
closer to the boundary threshold much earlier. In general, we also see that the t∗γ ’s
are significantly lower and the optimal d’s are larger in Tables 3 and 4 as compared
to Table 1, implying that the alarm goes off when the distance from the boundary is
larger and we wait a shorter duration after the alarm goes off to replace the system.
Further, comparing Tables 3 and 4, we see that for the latter one, the optimal d’s are
larger and the expected t∗γ ’s are lower because when τ = 25, the healing continues for
a shorter duration than when τ = 50.

3.2. Case 2: Some shocks are not healable

In this subsection, we consider the situation when not all shocks are healable. A fixed
proportion p of shocks never heal; that is, their damage is permanent. Equivalently,
for such shocks τ = 0. We incorporate the effect of such shocks, not by an increase
in accumulated damage, but by a sudden drop in the threshold boundary. Figure 9
illustrates the cumulative damage until it exceeds the boundary threshold.

(1) Classify a shock as nonhealable with probability p.
(2) Let N(t) denote the number of shocks that have arrived by time t (observed at

increments of ∆). Let Hi be an indicator function that takes value 1 if the i-th
shock is healable, and 0 otherwise. Then the boundary curve drops by the cor-
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Table 2. For Y ∼ Weibull(2,1/2), κ = 0.02, and B(t) = 500 − t2/50, and various inter-arrival time

distributions, the optimal d and [the associated t∗γ ] are displayed for γ = 0.90, 0.85, 0.80.

X ∼ gamma (shape = 3, scale = 1/3)
γ = 0.90 γ = 0.85 γ = 0.80
8.7 [0.542] 8.7 [0.706] 8.4 [0.865]

X ∼ Weibull (shape = 2, scale = 2/
√
π)

γ = 0.90 γ = 0.85 γ = 0.80
9.3 [0.601] 10.1 [0.774] 10.1 [0.934]

X ∼ inverse-Gaussian (mean = 1)
γ = 0.90 γ = 0.85 γ = 0.80
9.9 [0.334] 9.9 [0.432] 10.5 [0.529]

X ∼ exponential (rate = 1)
γ = 0.90 γ = 0.85 γ = 0.80

11.4 [0.143] 10.9 [0.229] 10.7 [0.315]

Table 3. For τ = 50, X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), and for various choices of κ and B(t), the

optimal d and [the associated t∗γ ] are displayed for γ = 0.80, 0.85, 0.90.

B(t) = 500− t2/60
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 9.9 [0.447] 9.9 [0.575] 11.1 [0.690]
0.02 9.3 [0.578] 9.8 [0.742] 9.8 [0.880]

B(t) = 500− t2/50
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 10.5 [0.435] 11 [0.564] 11.3 [0.683]
0.02 9.6 [0.552] 9.6 [0.714] 10.6 [0.863]

B(t) = 500− t2/40
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 10.6 [0.392] 10.6 [0.527] 11.4 [0.634]
0.02 9.7 [0.505] 10.1 [0.642] 10.2 [0.774]

responding magnitude of the nonhealable shock, making the modified boundary

B(t) = a+ bt− ct2 −
N(t)∑
i=1

(1−Hi)Yi (5)

(3) We record the cumulative damage inflicted by healable shocks only. Therefore,
the cumulative damage D to the system at time t, is calculated as in Subsection
2.2

D(t) =

N(t)∑
i=1

Hi Yie
−κ[(t−Si)∧τ ] (6)

As in Subsection 3.1, here also on average, compared to Subsection 2.3, the overall
waiting time until replacement after the alarm goes off is shorter. Here, we do not
provide any policy diagram to avoid repetition since the results are already provided
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Figure 6. Depicting cumulative damage (black and red) as shocks arrive randomly. The blue curve represents

the quadratically decreasing boundary threshold; dotted vertical segments denote a random amount of damage
inflicted by each shock, and the continuous curves represent the exponential decay of cumulative damage up to

a finite duration τ = 1 due to constant healing. When the cumulative damage exceeds the boundary threshold,

the system fails.

in Table 5.

3.3. Case 3: The arrival times of healable and nonhealable shocks have
different distributions, so do their magnitudes

Suppose that the shocks affecting the system are of two types based on their healing
capabilities. The first type of shock is self-healable for a finite duration τ (or up to
a certain percentage of the damage heals and the rest is permanent). We assume
such healable shocks arrive with inter-arrival times X1, X2, . . . , Xn which are IID with
arbitrary CDF F . Moreover, the magnitudes of each of such shocks are denoted by
Y1, Y2, . . . , Yn which are IID with arbitrary CDF G. The second type of shock are
nonhealable (or τ = 0) and their impact is characterized by drops in the non-increasing
boundary threshold causing the system to degrade more severely than under natural
aging. Let Z1, Z2, . . . , Zm denote the inter-arrival times of the nonhealable shocks,
which are IID with arbitrary CDF H. Let U1, U2, . . . , Um denote the magnitudes of
such shocks, which are IID with arbitrary CDF K.

The system fails in one of three ways:

(i) a new healable shock arrives so that the cumulative damage exceeds the bound-
ary;

(ii) the accumulated damage curve, although decreasing because of healing, crosses
the boundary which decreases faster due to aging;
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Figure 7. With κ = 0.02 and τ = 50, the expected cost per unit time is minimized at d = 9.6 for γ = 0.80
and γ = 0.85 and at d = 10.6 for γ = 0.90.

Table 4. For τ = 25, X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), and for various choices of κ and B(t), the
optimal d and [the associated t∗γ ] are displayed for γ = 0.80, 0.85, 0.90.

B(t) = 500− t2/60
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 10.8 [0.338] 11.3 [0.449] 11.3 [0.568]
0.02 10.3 [0.426] 10.3 [0.562] 10.3 [0.682]

B(t) = 500− t2/50
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 11.3 [0.349] 11.3 [0.456] 11.3 [0.561]
0.02 10.6 [0.430] 10.4 [0.560] 10.7 [0.669]

B(t) = 500− t2/40
κ γ = 0.80 γ = 0.85 γ = 0.90
0.01 11.3 [0.339] 11.5 [0.442] 11.7 [0.541]
0.02 10.8 [0.394] 11.1 [0.517] 11.1 [0.626]

(iii) a new nonhealable shock arrives so that the boundary suddenly drops below the
(otherwise) gently decreasing cumulative damage curve.

Figure 10 illustrates the type (i) and (ii) failures using black and red sample paths
which depict accumulated damage as a function of time. The black sample path crosses
the boundary threshold when a healable shock of sufficient magnitude arrives. The red
sample path exceeds the boundary while the system is healing, but the boundary comes
down faster due to aging. Type (iii) failure is self-explanatory (and not shown in the
illustration).
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Figure 8. With κ = 0.02 and τ = 25, the expected cost per unit time is minimized at d = 10.6 for γ = 0.80,

d = 10.4 for γ = 0.85, and d = 10.7 for γ = 0.80. If there are multiple minima, choose the smallest one.

Table 5. For p = 0.2 proportion of all shocks nonhealable, for X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2),

and for various choices of κ and B(t), the optimal d and [the associated t∗γ ] are displayed for γ = 0.90, 0.85, 0.80.

B(t) = 500− t2/60
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.0 [0.263] 10.2 [0.367] 10.2 [0.476]
0.02 9.0 [0.462] 9.0 [0.613] 9.0 [0.754]

B(t) = 500− t2/50
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.6 [0.263] 10.6 [0.378] 10.9 [0.485]
0.02 9.0 [0.425] 9.0 [0.598] 9.0 [0.745]

B(t) = 500− t2/40
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.2 [0.263] 11.2 [0.374] 11.4 [0.480]
0.02 10.3 [0.398] 10.4 [0.545] 10.4 [0.676]

Figure 11 shows the expected cost per unit time as a function of d when B(t) =
500− t2/50. Table 6 displays the simulation results showing the optimal d for different
choices of κ and boundary thresholds with different quadratic coefficients, but keeping
the inter-arrival time distribution of healable shocks and their magnitudes such that
their means are 1 and 10 units respectively; and the inter-arrival times of non-healable
shocks and their damage contributions such that their means are 5 and 3 units respec-
tively. The given choice is considered to ensure that non-healable shocks are not more
frequent than healable shocks. Results on system reliability in subsections 3.1, 3.2,
and 3.3 are similar to those in Section 2. Hence, we do not display any new figures.

77



Policies under variable shocks and healing-patterns D. Chatterjeea and J. Sarkarb

0 5 10 15 20

0

2

4

6

 

A
cc

um
ul

at
ed

 d
am

ag
e

Non−increasing boundary thresholds

T
T

Time

Figure 9. Depicting cumulative damage and the corresponding boundary curves (black and red curves) as

shocks arrive randomly. The boundaries drop due to the arrival of nonhealable shocks denoted by diamond-
shaped dots on the stochastic paths.

4. Summary and Discussion

In this paper, we let external shocks inflict damage of varying magnitudes. We also al-
low the system to begin to heal instantaneously and continue to self-heal exponentially
at a fixed rate κ (> 0) while also continually degrading due to aging. We have designed
a time-dependent maintenance policy that focuses on risk assessment of the system at
a given time as soon as the system comes dangerously close (that is, within d units)
to the boundary threshold, at which instant we are warned of a high probability of
failure shortly, and thus we determine an optimal d and associated replacement time
by minimizing the cost per unit time. Our study allows (i) changes in healing behavior
such as healing happening only for a fixed duration τ ; (ii) changes in types of shocks,
wherein with a certain probability p, some shocks are healable and the others are non-
healable which leave some permanent damage to the system by suddenly degrading
the system by a random amount; and also a combination of both types of shocks.
Here too we allow arbitrary inter-arrival time distribution of all types of shocks. If
not exactly, most of the situations mentioned in this research can be found in MEMS.
We make the following important discoveries from this research that would enable the
system manager to make appropriate decisions:

• As the boundary degrades faster, the optimal d increases, and the associated
expected t∗γ(d) decreases, which means due to higher risk, we allow the system
to not come too close to the boundary threshold and also allow it to run for a
shorter duration of time once the risk is detected; also when the healing rate
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Figure 10. Depicting cumulative damage as shocks arrive randomly. The black and red stepwise decreas-

ing curves represent the boundary threshold corresponding to the black and red sample paths respectively.
Diamond-shaped dots represent the arrival times of nonhealable shocks. For illustration we consider τ = 2 and

that nonhealable shocks arrive twice as fast as healable shocks.

becomes faster, we can allow the optimal d to be smaller and thus allow the
system to function for a little bit longer.

• When shocks do not heal indefinitely, but rather for a fixed duration τ , their
residual damage brings the collective damage closer to the boundary threshold
much earlier. In general, we also see that the t∗γ(d)’s are significantly lower and
the optimal d’s are larger as compared to the former setup implying that the
alarm goes off when the distance from the boundary is larger and we wait for a
shorter duration after the alarm goes off to replace the system. Furthermore, if
τ is shorter, the optimal d’ s are even larger and the expected t∗γ(d)’s are even
smaller because healing continues for a shorter duration, increasing the risk of
failure.

• When a fixed proportion p of shocks never heal; that is, their damage is perma-
nent, we see that on average, as compared to Subsection 2.3, the overall waiting
time until replacement after the alarm goes off is shorter.

• When there are two types of shock where the first type of shock is self-healable
for a finite duration τ (or when a certain percentage of the damage heals and
the rest is permanent), and the second type of shock is non-healable, we have
similar interpretations: As healing patterns change or the system degrades much
faster, we wait a relatively shorter duration of time before replacing the system
to reduce the risk of failure.

This research provides a comprehensive view of different types of shocks and degra-
dation rates. Although the simulations and illustrations consider some standard para-
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Figure 11. The expected cost per unit time is minimized at d = 11.1 for γ = 0.90; at d = 11.1 for γ = 0.85

and d = 11.1 for γ = 0.80. If there are multiple minima, choose the smallest one.

Table 6. For X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), Z ∼ Weibull(2,10/
√
π), U ∼ gamma (3,1), and for

various choices of κ and B(t), the optimal d and [the associated t∗γ ] are displayed for γ = 0.90, 0.85, 0.80.

B(t) = 500− t2/60
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.0 [0.305] 11.0 [0.401] 11.3 [0.495]
0.02 10.8 [0.415] 11.0 [0.543] 11.1 [0.647]

B(t) = 500− t2/50
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.3 [0.290] 11.3 [0.383] 11.3 [0.467]
0.02 11.1 [0.382] 11.1 [0.512] 11.1 [0.631]

B(t) = 500− t2/40
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.5 [0.278] 11.5 [0.365] 11.5 [0.448]
0.02 11.1 [0.382] 11.5 [0.502] 12.4 [0.605]

metric distributions, the approach can easily be replicated for any distribution where
parameters can be approximated from the data.

The various choices of inter-arrival time and magnitude of damage distributions
considered in this research are solely to illustrate how to find optimal replacement
times. We acknowledge that a real system may not satisfy all the assumptions that
we have mentioned in Section 2. Therefore, the practitioner should be prepared to
modify these assumptions as appropriate and imitate the probabilistic approach of
this research to determine a suitable maintenance policy. In the future, we like to
incorporate different self-healing patterns and different degradation processes such as
the gamma process, Wiener process, etc.

In summary, our research provides a computational technique to construct a reason-
able preventive maintenance policy for the utmost utilization of the system’s lifetime
while allowing only a small risk of failure. By numerically determining the replace-
ment time of the system, this paper enables the system engineer to make an optimal
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industrial decision. This research also demonstrates that measuring the reliability of
the system alone is not optimal to make a good decision. Sometimes, a cost-based
approach is more beneficial. Whereas we illustrated decision-making for one particu-
lar choice of boundary function, several choices of arrival time distribution, and some
variations on the healing pattern, by generalizing such choices, the computational
technique applies to many other systems. Therefore, the methodology exhibited in
this research contributes to a broader study of reliability and sustainability.
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